Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
उत्तर
We have to prove (cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
We know that
`sin^2 theta + cos^2 theta = 1`
`cosec^2 theta - cot^2 theta = 1`
So,
`(cosec theta + sin theta)(cosec theta - sin theta) = cosec^2 theta - sin^2 theta`
`= (1 + cot^2 theta) - (1 - cos^2 theta)`
`= 1 + cot^2 theta - 1 + cos^2 theta`
`= cot^2 theta + cos^2 theta`
APPEARS IN
संबंधित प्रश्न
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
Solve.
sin15° cos75° + cos15° sin75°
Solve.
sin42° sin48° - cos42° cos48°
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Evaluate:
cosec (65° + A) – sec (25° – A)
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find cosine of 65° 41’
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
If 8 tan x = 15, then sin x − cos x is equal to
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
The value of tan 72° tan 18° is
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.
The value of the expression (cos2 23° – sin2 67°) is positive.