Advertisements
Advertisements
प्रश्न
If 8 tan x = 15, then sin x − cos x is equal to
पर्याय
\[\frac{8}{17}\]
\[\frac{17}{7}\]
\[\frac{1}{17}\]
\[\frac{7}{17}\]
उत्तर
Given that:
`8 tan x=15`
`tan x=15/8`
⇒` "Perpendicular"=15`
⇒` "Base"=8`
⇒` "Hypotenuse"=sqrt225+64`
⇒ `"Hypotenuse"=17`
We know that `sin x = "Perpendicular"/"Hypotenuse" and cos x = "Base"/"Hypotenuse"`
We find: `sin x-cos x`
⇒` sin x-cos x= 15/17-8/17`
⇒` sin x-cos x = 7/17`
APPEARS IN
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
Evaluate `(tan 26^@)/(cot 64^@)`
Write all the other trigonometric ratios of ∠A in terms of sec A.
Solve.
sin15° cos75° + cos15° sin75°
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
Prove that:
sin (28° + A) = cos (62° – A)
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
In the following figure the value of cos ϕ is
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Solve: 2cos2θ + sin θ - 2 = 0.
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.