Advertisements
Advertisements
प्रश्न
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
उत्तर
Given that:
`A+B=90°`
`tan A=3/4`
A+B=90°
⇒B=90°-A
⇒ `cot B= cot (90°-A)`
⇒` cot B= tan A`
⇒`cot B=3/4[cot(90°-A)=tan A]`
Hence the value of cot B is `3/4`
APPEARS IN
संबंधित प्रश्न
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
`tan47/cot43`
Evaluate:
tan(55° - A) - cot(35° + A)
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
Write the value of tan 10° tan 15° tan 75° tan 80°?
The value of cos2 17° − sin2 73° is
The value of tan 1° tan 2° tan 3° ...... tan 89° is
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Solve: 2cos2θ + sin θ - 2 = 0.
Find the value of the following:
sin 21° 21′
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
If x and y are complementary angles, then ______.