Advertisements
Advertisements
प्रश्न
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
उत्तर
`cosθ=1/sqrt(2)`
`cos^2theta=(1/sqrt2)^2=1/2`
`cos^2theta+ sin^2theta=1`
`1/2+sin^2theta=1`
`sin^2theta=1-1/2=1/2`
`sintheta=sqrt(1/2)=1/sqrt2`
APPEARS IN
संबंधित प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Solve.
`sec75/(cosec15)`
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
The value of cos2 17° − sin2 73° is
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
Evaluate: cos2 25° - sin2 65° - tan2 45°
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
If tan θ = cot 37°, then the value of θ is
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.
The value of (tan1° tan2° tan3° ... tan89°) is ______.
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)