Advertisements
Advertisements
प्रश्न
Find the value of x, if sin 3x = 2 sin 30° cos 30°
उत्तर
sin 3x = 2 sin 30° cos 30°
sin 3x = `2(1/2)(sqrt3/2)`
sin 3x = `sqrt3/2 = sin60^circ`
3x = 60°
Hence, x = 20°
APPEARS IN
संबंधित प्रश्न
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
Write all the other trigonometric ratios of ∠A in terms of sec A.
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Use trigonometrical tables to find tangent of 37°
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?