Advertisements
Advertisements
प्रश्न
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
उत्तर
cos (2x – 6) = cos2 30° – cos2 60°
cos (2x – 6) = cos2 (90° – 60°) – cos2 60°
cos (2x – 6) = sin2 60° – cos2 60°
cos (2x – 6) = 1 – 2 cos2 60°
= `1 - 2(1/2)^2`
= `1 - 1/2`
= `1/2`
cos (2x – 6) = `1/2`
cos (2x – 6) = cos 60°
(2x – 6) = 60°
2x = 66°
Hence, x = 33°
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
Write the maximum and minimum values of cos θ.
If 3 cos θ = 5 sin θ, then the value of
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
`tan 47^circ/cot 43^circ` = 1