मराठी

2 Tan 30 ° 1 + Tan 2 30 ° is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{2 \tan 30° }{1 + \tan^2 30°}\]  is equal to

पर्याय

  • sin 60°

  • cos 60°

  •  tan 60°

  • sin 30°

MCQ

उत्तर

We have to find the value of the following expression 

`(2 tan 3θ°)/(1+ tan^2 30°)`

`(2 tan 30°)/(1+tan ^2 30°)` 

=`(2xx1/sqrt3)/(1+(1/sqrt3))`

= `(2/sqrt3)/(1+1/3)`

=`(2/sqrt3)/(4/3)` 

Since tan 60°=`sqrt3/2`  , since tan 30°= `1/sqrt3` 

=`sqrt3/2`

= `sin 60°` 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.5 | Q 26 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`


Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ


If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.


Prove the following trigonometric identities.

`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`


if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`


Evaluate:

`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`


Evaluate:

tan(55° - A) - cot(35° + A)


Find the value of angle A, where 0° ≤ A ≤ 90°.

cos (90° – A) . sec 77° = 1


Use tables to find the acute angle θ, if the value of sin θ is 0.4848


Evaluate:

`sec26^@ sin64^@ + (cosec33^@)/sec57^@`


Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)


If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 


If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\]  find the value of (sin A + cos A) sec A. 


If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to 


If \[\cos \theta = \frac{2}{3}\]  then 2 sec2 θ + 2 tan2 θ − 7 is equal to 


Prove that :

tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]


The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is


The value of the expression (cos2 23° – sin2 67°) is positive.


Prove the following:

tan θ + tan (90° – θ) = sec θ sec (90° – θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×