Advertisements
Advertisements
प्रश्न
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
पर्याय
sin 60°
cos 60°
tan 60°
sin 30°
उत्तर
We have to find the value of the following expression
`(2 tan 3θ°)/(1+ tan^2 30°)`
`(2 tan 30°)/(1+tan ^2 30°)`
=`(2xx1/sqrt3)/(1+(1/sqrt3))`
= `(2/sqrt3)/(1+1/3)`
=`(2/sqrt3)/(4/3)`
Since tan 60°=`sqrt3/2` , since tan 30°= `1/sqrt3`
=`sqrt3/2`
= `sin 60°`
APPEARS IN
संबंधित प्रश्न
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\] find the value of (sin A + cos A) sec A.
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
The value of the expression (cos2 23° – sin2 67°) is positive.
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)