मराठी

If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A. - Mathematics

Advertisements
Advertisements

प्रश्न

If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.

उत्तर

Given that,

sec 4A = cosec (A − 20°)

cosec (90° − 4A) = cosec (A − 20°)

90° − 4A= A− 20°

110° = 5A

A = 22°

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction to Trigonometry - Exercise 8.3 [पृष्ठ १८९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 8 Introduction to Trigonometry
Exercise 8.3 | Q 5 | पृष्ठ १८९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A


if `cos theta = 4/5` find all other trigonometric ratios of angles θ


if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`


For triangle ABC, show that : `sin  (A + B)/2 = cos  C/2`


Evaluate:

cosec (65° + A) – sec (25° – A)


Evaluate:

`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`


Find the value of x, if sin 2x = 2 sin 45° cos 45°


Use tables to find the acute angle θ, if the value of tan θ is 0.2419


Evaluate:

`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`


If A + B = 90° and \[\cos B = \frac{3}{5}\]  what is the value of sin A? 


If tan2 45° − cos2 30° = x sin 45° cos 45°, then x


The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 


Prove that:

\[\frac{sin\theta  \cos(90°  - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


Evaluate:

3 cos 80° cosec 10°+ 2 sin 59° sec 31°


Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°


Find the value of the following:

`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`


Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`


In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?


The value of the expression (cos2 23° – sin2 67°) is positive.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×