Advertisements
Advertisements
प्रश्न
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
उत्तर
Given that,
sec 4A = cosec (A − 20°)
cosec (90° − 4A) = cosec (A − 20°)
90° − 4A= A− 20°
110° = 5A
A = 22°
APPEARS IN
संबंधित प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Evaluate:
cosec (65° + A) – sec (25° – A)
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
The value of
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
The value of the expression (cos2 23° – sin2 67°) is positive.