Advertisements
Advertisements
प्रश्न
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
उत्तर
cos 60° = `1/sqrt(2)`
`(cos 70^circ)/(sin 20^circ) = (cos(90^circ - 20^circ))/(sin 20^circ) = (sin 20^circ)/(sin 20^circ)` = 1
`(cos 59^circ)/(sin 31^circ) = (cos(90^circ - 31^circ))/(sin 31^circ) = (sin 31^circ)/(sin 31^circ)` = 1
`(cos theta)/(sin(90^circ - theta)) = cos theta/cos theta` = 1
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
= `1 + 1 + 1 - 8(1/2)^2`
= `3 - 8 xx 1/4`
= 3 – 2
= 1
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
If the angle θ = –45° , find the value of tan θ.
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
The value of tan 72° tan 18° is
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?