Advertisements
Advertisements
प्रश्न
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
उत्तर
tan 30° = `1/sqrt(3)`, tan 45° = 1, tan 60° = `sqrt(3)`
tan 15° . tan 30°. tan 45° . tan 60°. tan 75° = `tan 15^circ * 1/sqrt(3) * 1 * sqrt(3) tan 75^circ`
= `tan 15^circ xx tan 75^circ xx 1/sqrt(3) xx 1 xx sqrt(3)`
= `tan(90^circ - 75^circ) xx 1/(cot75^circ) xx 1` ...[tan 90° – θ = cot θ]
= `cot 75^circ xx 1/(cot75^circ) xx 1`
= 1
APPEARS IN
संबंधित प्रश्न
If the angle θ= –60º, find the value of cosθ.
Use tables to find sine of 47° 32'
Use tables to find cosine of 26° 32’
Use trigonometrical tables to find tangent of 17° 27'
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
The value of tan 10° tan 15° tan 75° tan 80° is
The value of the expression (cos2 23° – sin2 67°) is positive.