Advertisements
Advertisements
Question
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
Solution
tan 30° = `1/sqrt(3)`, tan 45° = 1, tan 60° = `sqrt(3)`
tan 15° . tan 30°. tan 45° . tan 60°. tan 75° = `tan 15^circ * 1/sqrt(3) * 1 * sqrt(3) tan 75^circ`
= `tan 15^circ xx tan 75^circ xx 1/sqrt(3) xx 1 xx sqrt(3)`
= `tan(90^circ - 75^circ) xx 1/(cot75^circ) xx 1` ...[tan 90° – θ = cot θ]
= `cot 75^circ xx 1/(cot75^circ) xx 1`
= 1
APPEARS IN
RELATED QUESTIONS
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Prove that:
sec (70° – θ) = cosec (20° + θ)
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
`(sin 75^circ)/(cos 15^circ)` = ?