Advertisements
Advertisements
प्रश्न
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
उत्तर
tan 30° = `1/sqrt(3)`, tan 45° = 1, tan 60° = `sqrt(3)`
tan 15° . tan 30°. tan 45° . tan 60°. tan 75° = `tan 15^circ * 1/sqrt(3) * 1 * sqrt(3) tan 75^circ`
= `tan 15^circ xx tan 75^circ xx 1/sqrt(3) xx 1 xx sqrt(3)`
= `tan(90^circ - 75^circ) xx 1/(cot75^circ) xx 1` ...[tan 90° – θ = cot θ]
= `cot 75^circ xx 1/(cot75^circ) xx 1`
= 1
APPEARS IN
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
If tan A = cot B, prove that A + B = 90
Use tables to find sine of 34° 42'
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\] find the value of (sin A + cos A) sec A.
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
`tan 47^circ/cot 43^circ` = 1