Advertisements
Advertisements
प्रश्न
If tan A = cot B, prove that A + B = 90
उत्तर
∵ tan A = cot B
tan A = tan (90° – B)
A = 90° – B
A + B = 90°. Proved
APPEARS IN
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
If the angle θ = -60° , find the value of sinθ .
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Solve.
`tan47/cot43`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
If tanθ = 2, find the values of other trigonometric ratios.
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.