Advertisements
Advertisements
प्रश्न
If tanθ = 2, find the values of other trigonometric ratios.
उत्तर
tanθ = 2 ...(Given)
∴ cotθ = `1/2`
We have,
1 + tan2θ = sec2θ
1 + (2)2 = sec2θ
1 + 4 = sec2θ
5 = sec2θ
Taking Square root on both sides
secθ = `sqrt5`
Cosθ = `1/secθ`
Cosθ = `1/sqrt5`
tanθ = `sinθ/cosθ`
2 = `sinθ/(1/sqrt5)`
2 = `sinθ xx sqrt5/1`
`2/sqrt5 = sinθ`
`sinθ = 2/sqrt5`
cosecθ = `1/sinθ`
= `1/(2/sqrt5)`
= `1 xx sqrt5/2`
∴ cosecθ = `sqrt5/2`
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Evaluate.
cos225° + cos265° - tan245°
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Use tables to find cosine of 2° 4’
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.