हिंदी

If tanθ = 2, find the values of other trigonometric ratios. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If tanθ = 2, find the values of other trigonometric ratios.

योग

उत्तर

tanθ = 2   ...(Given)
∴ cotθ = `1/2`
We have,

1 + tan2θ = sec2θ

1 + (2)2 = sec2θ

1 + 4 = sec2θ

5 = sec2θ

Taking Square root on both sides

secθ = `sqrt5`

Cosθ = `1/secθ`

Cosθ = `1/sqrt5`

tanθ = `sinθ/cosθ`

2 = `sinθ/(1/sqrt5)`

2 = `sinθ xx sqrt5/1`

`2/sqrt5 = sinθ`

`sinθ = 2/sqrt5`
cosecθ = `1/sinθ`

= `1/(2/sqrt5)`

= `1 xx sqrt5/2`

∴ cosecθ = `sqrt5/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Problem Set 6 [पृष्ठ १३८]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 6 Trigonometry
Problem Set 6 | Q 3 | पृष्ठ १३८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Without using trigonometric tables, evaluate the following:

`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`


Evaluate.
cos225° + cos265° - tan245°


Express the following in terms of angles between 0° and 45°:

cosec68° + cot72°


For triangle ABC, show that : `sin  (A + B)/2 = cos  C/2`


A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`


Use tables to find cosine of 2° 4’


If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 


If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]


If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\] 


If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 


If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\] 


If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\] 


If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to 


If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\]  is equal to 


tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to 


If sin θ =7/25, where θ is an acute angle, find the value of cos θ.


Find the value of the following:

`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`


If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A


If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×