Advertisements
Advertisements
प्रश्न
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
विकल्प
1
−1
\[\sqrt{3}\]
\[\frac{1}{\sqrt{3}}\]
उत्तर
Given that: sin θ=cos (20-45°) and θ and 2θ-45 are acute angle
We have to find tan θ
⇒` sin θ=cos (2θ-45°)`
⇒`90°-θ=2θ-45θ`
⇒`3θ=135°`
Where θ and` 2θ-45°` are acute angles
Since `θ =45°`
Now
tan θ
= tan 45° Put θ=45°
=1
APPEARS IN
संबंधित प्रश्न
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
Solve.
`tan47/cot43`
Solve.
`sec75/(cosec15)`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Use trigonometrical tables to find tangent of 42° 18'
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\] find the value of (sin A + cos A) sec A.
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
The value of
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.