हिंदी

If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to 

विकल्प

  •  1

  • −1

  • \[\sqrt{3}\]

  • \[\frac{1}{\sqrt{3}}\]

MCQ

उत्तर

Given that:  sin θ=cos (20-45°) and θ and 2θ-45 are acute angle 

We have to find  tan θ 

⇒` sin θ=cos (2θ-45°)` 

⇒`90°-θ=2θ-45θ` 

⇒`3θ=135°` 

Where θ and` 2θ-45°`  are acute angles

Since `θ =45°` 

Now

tan θ 

 = tan 45°   Put θ=45° 

=1 

 

 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 23 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.


If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A


Solve.
`tan47/cot43`


Solve.
`sec75/(cosec15)`


Express the following in terms of angles between 0° and 45°:

cos74° + sec67°


For triangle ABC, show that : `tan  (B + C)/2 = cot  A/2`


Evaluate:

3cos80° cosec10° + 2 sin59° sec31°


Use trigonometrical tables to find tangent of 42° 18'


Evaluate:

sin 27° sin 63° – cos 63° cos 27°


If A and B are complementary angles, prove that:

cot B + cos B = sec A cos B (1 + sin B)


If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`


What is the maximum value of \[\frac{1}{\sec \theta}\] 


If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 


If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?


Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]


If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\]  find the value of (sin A + cos A) sec A. 


If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 


The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 


Express the following in term of angles between 0° and 45° :

sin 59° + tan 63°


In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×