Advertisements
Advertisements
प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
उत्तर
tan 2A = cot (A – 18°)
cot (90° – 2A) = cot (A – 18°)
(∵ cot (90° – θ) = tan θ)
90° – 2A = A – 18°
3A = 108°
A = 36°
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Solve.
`cos55/sin35+cot35/tan55`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
If cot( 90 – A ) = 1, then ∠A = ?
If sin 3A = cos 6A, then ∠A = ?
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.