English

If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A - Mathematics

Advertisements
Advertisements

Question

If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A

Solution

tan 2A = cot (A – 18°)

cot (90° – 2A) = cot (A – 18°)

(∵ cot (90° – θ) = tan θ)

90° – 2A = A – 18°

3A = 108°

A = 36°

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.3 [Page 189]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.3 | Q 3 | Page 189

RELATED QUESTIONS

If the angle θ= –60º, find the value of cosθ.


Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;

(i) cosec 69º + cot 69º

(ii) sin 81º + tan 81º

(iii) sin 72º + cot 72º


Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


Prove the following trigonometric identities.

`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`


Evaluate.
sin235° + sin255°


Evaluate:

`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2)  cos45^circ`


Use tables to find cosine of 26° 32’


Evaluate:

`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`


Prove that:

sin (28° + A) = cos (62° – A)


Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0


Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0


If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 


If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to 


Without using trigonometric tables, prove that:

sec70° sin20° + cos20° cosec70° = 2


Express the following in term of angles between 0° and 45° :

cosec 68° + cot 72°


A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.

cos(90° - A) · sec 77° = 1


If tan θ = 1, then sin θ . cos θ = ?


If x and y are complementary angles, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×