Advertisements
Advertisements
Question
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
Solution
cosec 68° + cot 72°
= cosec(90° – 22°) + cot(90° – 18°) ...(∵ cosec(90° – θ) = sec θ and cot(90° – θ) = tan θ)
= sec 22° + tan 18°
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Solve.
sin15° cos75° + cos15° sin75°
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
If tanθ = 2, find the values of other trigonometric ratios.
What is the maximum value of \[\frac{1}{\sec \theta}\]
Write the value of tan 10° tan 15° tan 75° tan 80°?
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.