Advertisements
Advertisements
Question
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
Solution
cos 74° + sec 67°
= cos(90° – 16°) + sec(90° – 23°)
= sin 16° + cosec 23°
APPEARS IN
RELATED QUESTIONS
If the angle θ = -60° , find the value of sinθ .
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
solve.
sec2 18° - cot2 72°
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Evaluate: cos2 25° - sin2 65° - tan2 45°
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°