Advertisements
Advertisements
Question
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
Solution
2 cos2 A – 1 = 0
`=> cos^2A = 1/2`
`=> cosA = 1/sqrt(2)`
We know `cos 45^@ = 1/sqrt(2)`
Hence, A = 45°
APPEARS IN
RELATED QUESTIONS
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
What is the value of (cos2 67° – sin2 23°)?
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Evaluate:
tan(55° - A) - cot(35° + A)
Use tables to find sine of 47° 32'
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
The value of cos 1° cos 2° cos 3° ..... cos 180° is
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.