Advertisements
Advertisements
Question
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
Solution
L.H.S. = cos 3A = cos 90° = 0
R.H.S. = 4 cos3 A – 3 cos A
= 4 cos3 30° – 3 cos 30°
= `4 (sqrt3/2)^3 - 3(sqrt3/2)`
= `(4 xx 3sqrt(3))/8 - (3sqrt(3))/2`
= `(3sqrt(3))/2 - (3sqrt(3))/2 = 0`
L.H.S. = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
Solve.
`cos22/sin68`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Prove that:
tan (55° - A) - cot (35° + A)
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°