Advertisements
Advertisements
Question
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Solution
From the tables, it is clear that tan 36° 24’ = 0.7373
tan θ − tan 36° 24’ = 0.7391 − 0.7373 = 0.0018
From the tables, diff of 4’ = 0.0018
Hence, θ = 36° 24’ + 4’ = 36° 28’
APPEARS IN
RELATED QUESTIONS
Solve.
`cos55/sin35+cot35/tan55`
Evaluate.
cos225° + cos265° - tan245°
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
`tan 47^circ/cot 43^circ` = 1