Advertisements
Advertisements
Question
Options
True
False
Solution
This statement is True.
Explanation:
Since, tan(90° – θ) = cot θ
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
Without using trigonometric tables evaluate:
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Evaluate.
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Use tables to find cosine of 2° 4’
Use trigonometrical tables to find tangent of 17° 27'
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If tanθ = 2, find the values of other trigonometric ratios.
Write the maximum and minimum values of cos θ.
If
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
Evaluate:
If tan θ = 1, then sin θ . cos θ = ?