Advertisements
Advertisements
Question
Use trigonometrical tables to find tangent of 17° 27'
Solution
tan 17° 27' = tan (17° 24' + 3')
= 0.3134 + 0.0010
= 0.3144
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Prove that:
sin (28° + A) = cos (62° – A)
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`