Advertisements
Advertisements
Question
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Solution
From the tables, it is clear that sin 29° = 0.4848
Hence, θ = 29°
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
What is the maximum value of \[\frac{1}{\sec \theta}\]
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If tan θ = 1, then sin θ . cos θ = ?