Advertisements
Advertisements
Question
What is the maximum value of \[\frac{1}{\sec \theta}\]
Solution
The maximum value of `1/secθ` is 1 because the maximum value of cosθ is 1 that is `1/ secθ=cosθ `
`1/sec θ=1`
APPEARS IN
RELATED QUESTIONS
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
Solve.
`cos22/sin68`
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Use trigonometrical tables to find tangent of 42° 18'
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
The value of cos2 17° − sin2 73° is
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
If sin 3A = cos 6A, then ∠A = ?