Advertisements
Advertisements
Question
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
Solution
`cosθ=1/sqrt(2)`
`cos^2theta=(1/sqrt2)^2=1/2`
`cos^2theta+ sin^2theta=1`
`1/2+sin^2theta=1`
`sin^2theta=1-1/2=1/2`
`sintheta=sqrt(1/2)=1/sqrt2`
APPEARS IN
RELATED QUESTIONS
If the angle θ = -60° , find the value of sinθ .
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Solve.
`tan47/cot43`
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Use trigonometrical tables to find tangent of 17° 27'
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
The value of (tan1° tan2° tan3° ... tan89°) is ______.
The value of the expression (cos2 23° – sin2 67°) is positive.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.