English

The value of (tan1° tan2° tan3° ... tan89°) is ______. - Mathematics

Advertisements
Advertisements

Question

The value of (tan1° tan2° tan3° ... tan89°) is ______.

Options

  • 0

  • 1

  • 2

  • `1/2`

MCQ
Fill in the Blanks

Solution

The value of (tan1° tan2° tan3° ... tan89°) is 1.

Explanation:

tan 1°.tan 2°.tan 3° ...... tan 89°

= tan 1°.tan 2°.tan 3°...tan 43°.tan 44°.tan 45°.tan 46°.tan 47°...tan 87°.tan 88°.tan 89°

Since, tan 45° = 1,

= tan 1°.tan 2°.tan 3°...tan 43°.tan 44°.1.tan 46°.tan 47°...tan 87°.tan 88°.tan 89°

= tan 1°.tan 2°.tan 3°…tan 43°.tan 44°.1.tan(90° – 44°).tan(90° – 43°) ...tan(90° – 3°).tan(90° – 2°).tan(90° – 1°)

Since, tan(90° – θ) = cot θ,

= tan 1°.tan 2°.tan 3°...tan 43°.tan 44°.1.cot 44°.cot 43°...cot 3°.cot 2°.cot 1°

Since, tan θ = `(1/cot θ)`

= `tan1^circ * tan2^circ * tan3°...tan43^circ * tan44^circ * 1 *  (1/tan 44^circ)`. `(1/tan 43^circ) ... (1/tan 3^circ) * (1/tan 2^circ) * (1/tan 1^circ)`

= `(tan 1^circ xx 1/tan1^circ) * (tan 2^circ xx 1/tan 2^circ) ... (tan 44^circ xx 1/tan 44^circ)`

= 1

Hence, tan 1°.tan 2°.tan 3° ...... tan 89° = 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [Page 90]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 6 | Page 90

RELATED QUESTIONS

`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`

 


`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`


Evaluate `(sin 18^@)/(cos 72^@)`


Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.


Without using trigonometric tables evaluate:

`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`


Evaluate:

cos 40° cosec 50° + sin 50° sec 40°


Prove that:

tan (55° - A) - cot (35° + A)


Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)


What is the maximum value of \[\frac{1}{\sec \theta}\] 


If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]


Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°. 


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


The value of cos2 17° − sin2 73° is 


The value of tan 10° tan 15° tan 75° tan 80° is 


If sin θ =7/25, where θ is an acute angle, find the value of cos θ.


Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.


If tan θ = cot 37°, then the value of θ is


If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.


If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×