Advertisements
Advertisements
Question
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
Solution
Sin (90° - 3A). cosec 42° = 1
⇒ sin (90° - 3A) = `(1)/("cosec" 42°)`
⇒ cos 3A = `(1)/("cosec" (90° - 48°)`
⇒ cos 3A = `(1)/(sec 48°)`
⇒ cos 3A = cos 48°
⇒ 3A = 48°
⇒ A = 16°.
APPEARS IN
RELATED QUESTIONS
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
The value of (tan1° tan2° tan3° ... tan89°) is ______.