Advertisements
Advertisements
Question
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Solution
L.H.S. = `(cos(90^circ - theta)costheta)/cottheta`
= `(sinthetacostheta)/(costheta/sintheta)`
= `(sinthetacostheta xx sintheta)/costheta`
= sin2θ
= 1 – cos2θ = R.H.S.
APPEARS IN
RELATED QUESTIONS
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find sine of 21°
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is