Advertisements
Advertisements
प्रश्न
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
उत्तर
L.H.S. = `(cos(90^circ - theta)costheta)/cottheta`
= `(sinthetacostheta)/(costheta/sintheta)`
= `(sinthetacostheta xx sintheta)/costheta`
= sin2θ
= 1 – cos2θ = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
`(sin 75^circ)/(cos 15^circ)` = ?
Sin 2B = 2 sin B is true when B is equal to ______.