Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
उत्तर
We have to prove`(sec theta + cos theta)(sec theta - cos theta) = tan^2 theta + sin^2 theta`
We know that
`sin^2 theta + cos^2 theta = 1`
`sec^2 theta - tan^2 theta = 1`
`(sec theta + cos theta)(sec theta - cos theta) = sec^2 theta - cos^2 theta`
`= (1 + tan^2 theta) - (1 - sin^2 theta)`
`= 1 + tan^2 theta - 1 + sin^2 theta`
`= tan^2 theta + sin^2 theta`
APPEARS IN
संबंधित प्रश्न
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Evaluate.
sin235° + sin255°
Evaluate.
cos225° + cos265° - tan245°
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Use tables to find cosine of 9° 23’ + 15° 54’
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
In the following figure the value of cos ϕ is
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
If x and y are complementary angles, then ______.