Advertisements
Advertisements
प्रश्न
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
विकल्प
\[\frac{12}{5}\]
\[\frac{5}{12}\]
\[\frac{13}{12}\]
\[\frac{12}{13}\]
उत्तर
We have the following given data in the figure, `AD=4cm, BD=3 cm, CB=12 cm`
Now we will use Pythagoras theorem in, ΔABD
`AB=sqrt(3^2+4^2)`
= 5 cm
Therefore,
`cot θ =( CB)/(AB)`
=`12/5`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Evaluate `(tan 26^@)/(cot 64^@)`
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
solve.
cos240° + cos250°
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Use trigonometrical tables to find tangent of 17° 27'
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`