हिंदी

In the Following Figure. Ad = 4 Cm, Bd = 3 Cm and Cb = 12 Cm, Find the Cot θ. - Mathematics

Advertisements
Advertisements

प्रश्न

In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.

 

 

विकल्प

  • \[\frac{12}{5}\]

  • \[\frac{5}{12}\]

  • \[\frac{13}{12}\]

  • \[\frac{12}{13}\]

MCQ

उत्तर

We have the following given data in the figure, `AD=4cm, BD=3 cm, CB=12 cm`

Now we will use Pythagoras theorem in, ΔABD 

`AB=sqrt(3^2+4^2)` 

= 5 cm

Therefore, 

`cot θ  =( CB)/(AB)`

=`12/5` 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 35 | पृष्ठ ५९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ


Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°


Evaluate `(tan 26^@)/(cot 64^@)`

 


If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.


Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ


solve.
cos240° + cos250°


Evaluate:

3cos80° cosec10° + 2 sin59° sec31°


Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°


Use trigonometrical tables to find tangent of 17° 27'


Evaluate:

`sec26^@ sin64^@ + (cosec33^@)/sec57^@`


Evaluate:

cos 40° cosec 50° + sin 50° sec 40°


If A and B are complementary angles, prove that:

cot A cot B – sin A cos B – cos A sin B = 0


Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0


If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 


If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 


Prove the following.

tan4θ + tan2θ = sec4θ - sec2θ


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


Express the following in term of angles between 0° and 45° :

sin 59° + tan 63°


Find the value of the following:

`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×