Advertisements
Advertisements
प्रश्न
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
उत्तर
Taking LHS
tan4θ + tan2θ
= tan2θ( tan2θ + 1)
= (sec2θ - 1)(sec2θ) [1 + tan2θ = sec2θ]
= sec4θ - sec2θ
= RHS
संबंधित प्रश्न
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Solve.
`cos22/sin68`
Solve.
`cos55/sin35+cot35/tan55`
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use trigonometrical tables to find tangent of 37°
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Prove that:
sec (70° – θ) = cosec (20° + θ)
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
The value of cos2 17° − sin2 73° is
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
If sec A + tan A = x, then sec A = ______.