Advertisements
Advertisements
प्रश्न
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
उत्तर १
`(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
= `[cot(90°- 49°)]^2/(tan^2 49°)- 2[sin(90° - 15°)]^2/(cos^2 15°)`
= `(tan^2 49°)/(tan^2 59°) - 2 (cos^2 15°)/(cos^2 15°)`
= 1 - 2
= -1
उत्तर २
`(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
= `[cot(90°- 49°)]^2/(tan^2 49°)- 2[sin(90° - 15°)]^2/(cos^2 15°)`
= `(tan^2 49°)/(tan^2 49°) - 2 (cos^2 15°)/(cos^2 15°)`
= 1 - 2
= -1
APPEARS IN
संबंधित प्रश्न
Evaluate `(tan 26^@)/(cot 64^@)`
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Use tables to find cosine of 2° 4’
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
Write the maximum and minimum values of sin θ.
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
The value of tan 1° tan 2° tan 3°…. tan 89° is