Advertisements
Advertisements
प्रश्न
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
उत्तर १
`(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
= `[cot(90°- 49°)]^2/(tan^2 49°)- 2[sin(90° - 15°)]^2/(cos^2 15°)`
= `(tan^2 49°)/(tan^2 59°) - 2 (cos^2 15°)/(cos^2 15°)`
= 1 - 2
= -1
उत्तर २
`(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
= `[cot(90°- 49°)]^2/(tan^2 49°)- 2[sin(90° - 15°)]^2/(cos^2 15°)`
= `(tan^2 49°)/(tan^2 49°) - 2 (cos^2 15°)/(cos^2 15°)`
= 1 - 2
= -1
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Use tables to find cosine of 9° 23’ + 15° 54’
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
Write the maximum and minimum values of sin θ.
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
If sec A + tan A = x, then sec A = ______.