Advertisements
Advertisements
प्रश्न
Use tables to find cosine of 9° 23’ + 15° 54’
उत्तर
cos (9° 23’ + 15° 54’) = cos 24° 77’
= cos 25° 17’
= cos (25° 12’ + 5’)
= 0.9048 − 0.0006
= 0.9042
APPEARS IN
संबंधित प्रश्न
Evaluate cosec 31° − sec 59°
Solve.
sin15° cos75° + cos15° sin75°
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.