Advertisements
Advertisements
प्रश्न
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
उत्तर
Terminal arm passes through (4,3).
Hence,
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Use tables to find sine of 47° 32'
Use tables to find cosine of 2° 4’
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
Prove that:
tan (55° - A) - cot (35° + A)
Prove that:
sin (28° + A) = cos (62° – A)
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
Write the value of tan 10° tan 15° tan 75° tan 80°?
If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\] find the value of (sin A + cos A) sec A.
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.