Advertisements
Advertisements
प्रश्न
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
उत्तर
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A))`
= `1/(1 + cosA) + 1/(1 - cosA)`
= `(1 - cosA + 1 + cosA)/((1 + cosA)(1 - cosA))`
= `2/(1 - cos^2A)`
= 2 cosec2 A
= 2 sec2 (90° – A)
APPEARS IN
संबंधित प्रश्न
Solve.
sin42° sin48° - cos42° cos48°
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
`(sin 75^circ)/(cos 15^circ)` = ?
If sin 3A = cos 6A, then ∠A = ?
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)