मराठी

Prove the following: tan θ + tan (90° – θ) = sec θ sec (90° – θ) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following:

tan θ + tan (90° – θ) = sec θ sec (90° – θ)

बेरीज

उत्तर

L.H.S = tan θ + tan (90° – θ)  ...[∵ tan (90° – θ) = cot θ]

= tan θ + cot θ

= `sinθ/cosθ + cosθ/sinθ`

= `(sin^2 theta + cos^2 theta)/(sin theta cos theta)`  ...`[∵ tan theta = sintheta/costheta "and" cot theta = costheta/sintheta]`

= `1/(sin theta cos theta)`   ...[∵ sin2θ + cos2θ = 1]

= sec θ cosec θ   ...`[∵ sec theta = 1/costheta "and" cos theta = 1/sin theta]`

= sec θ sec (90° – θ)  ...[∵ sec (90° – θ) = cosec θ] 

= R.H.S 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.3 [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.3 | Q 7 | पृष्ठ ९५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`

 


Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;

(i) cosec 69º + cot 69º

(ii) sin 81º + tan 81º

(iii) sin 72º + cot 72º


If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ


if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`


if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`


Solve.
sin15° cos75° + cos15° sin75°


Evaluate.
sin235° + sin255°


Use tables to find sine of 47° 32'


Evaluate:

`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`


Evaluate:

`sec26^@ sin64^@ + (cosec33^@)/sec57^@`


Evaluate:

`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`


Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0


If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]


If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:


If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 


If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\]  is equal to 


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.


If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×