Advertisements
Advertisements
प्रश्न
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)
उत्तर
L.H.S = tan θ + tan (90° – θ) ...[∵ tan (90° – θ) = cot θ]
= tan θ + cot θ
= `sinθ/cosθ + cosθ/sinθ`
= `(sin^2 theta + cos^2 theta)/(sin theta cos theta)` ...`[∵ tan theta = sintheta/costheta "and" cot theta = costheta/sintheta]`
= `1/(sin theta cos theta)` ...[∵ sin2θ + cos2θ = 1]
= sec θ cosec θ ...`[∵ sec theta = 1/costheta "and" cos theta = 1/sin theta]`
= sec θ sec (90° – θ) ...[∵ sec (90° – θ) = cosec θ]
= R.H.S
APPEARS IN
संबंधित प्रश्न
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
sin15° cos75° + cos15° sin75°
Evaluate.
sin235° + sin255°
Use tables to find sine of 47° 32'
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A