Advertisements
Advertisements
प्रश्न
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
उत्तर
Given `tan theta = 1/sqrt2`
We have to find the value of the expression `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
We know that,
`1 +cot^2 theta = cosec^2 theta`
`=> cosec^2 theta - cot^2 theta = 1`
Therefore, the given expression can be written as
`(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta) = (cosec^2 theta - sec^2 theta)/(1 + cot^2 theta + cot^2 theta)`
`tan theta = 1/sqrt2 => cot theta = sqrt2`
`(cosec^2 theta - sec^2 theta)/(1 + 2 cot^2 theta) = (1 + cot^2 theta - (1 + tan^2 theta))/(1 + 2 cot62 theta)` (since `sec^2 theta =1 + tan^2 theta`)
`= (cot^2 theta - tan^2 theta)/(1 + 2 cot^ theta)`
`= ((sqrt2)^2 - (1/sqrt2)^2)/(1 + 2 xx (sqrt2)^2)`
`= 3/10`
Hence, the value of the given expression is 3/10
APPEARS IN
संबंधित प्रश्न
Write all the other trigonometric ratios of ∠A in terms of sec A.
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find cosine of 65° 41’
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
What is the maximum value of \[\frac{1}{\sec \theta}\]
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
The value of tan 1° tan 2° tan 3° ...... tan 89° is
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
If tan θ = cot 37°, then the value of θ is
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.