Advertisements
Advertisements
प्रश्न
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
पर्याय
\[\frac{1}{2}\]
\[\frac{\sqrt{3}}{2}\]
1
\[\frac{1}{\sqrt{2}}\]
उत्तर
Let the angles of a triangle Δ ABC be (a-d), (a),(a+d)espectively which constitute an A.P.As we know that sum of all the three angles of a triangle is 180°. so, (a-d)+a(a+d)=180°
So, a =60°
Therefore, ∠ B= 60°
Hence, `sin ∠B= sqrt3/2`
APPEARS IN
संबंधित प्रश्न
What is the value of (cos2 67° – sin2 23°)?
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Solve.
sin15° cos75° + cos15° sin75°
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use trigonometrical tables to find tangent of 17° 27'
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
The value of cos2 17° − sin2 73° is
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`