Advertisements
Advertisements
प्रश्न
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
पर्याय
\[\frac{4}{7}\]
\[\frac{3}{7}\]
\[\frac{2}{7}\]
\[\frac{1}{7}\]
उत्तर
Given that:
`sec^2θ=3`
`secθ=sqrt3`
We need to find the value of the expression
`(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ)`
`"since" secθ="Hypotenuse"/"Base"`. so
⇒` "Hypotenuse"= sqrt3`
⇒ `"Base"=1`
⇒ `"Perpendicular"=sqrt(3-1)`
⇒ `"Perpendicular"=sqrt2`
Here we have to find: `(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ)`
⇒`(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ) = (2/1-3/2)/(2/1+3/2)`
⇒`(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ)=(1/2)/(7/2)`
⇒`(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ)=1/7`
APPEARS IN
संबंधित प्रश्न
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Use tables to find sine of 47° 32'
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If A and B are complementary angles, then
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
The value of tan 72° tan 18° is
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
The value of (tan1° tan2° tan3° ... tan89°) is ______.