Advertisements
Advertisements
प्रश्न
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
पर्याय
\[\sin \frac{A}{2}\]
\[\cos \frac{A}{2}\]
\[- \sin \frac{A}{2}\]
\[- \cos \frac{A}{2}\]
उत्तर
We know that in triangle `ABC`
`A+B+C=180°`
⇒ `B+C=180°-A`
⇒` (B+C)/2=(90°)/2-A/2`
⇒ `sin ((B+C)/2)=sin (90°-A/2)`
`"since" sin (90°-A)=cos A`
So
`sin ((B+C)/2)= cos A`
APPEARS IN
संबंधित प्रश्न
Evaluate `(tan 26^@)/(cot 64^@)`
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
Solve.
sin15° cos75° + cos15° sin75°
Solve.
sin42° sin48° - cos42° cos48°
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Use tables to find cosine of 9° 23’ + 15° 54’
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
If cot( 90 – A ) = 1, then ∠A = ?
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
If x and y are complementary angles, then ______.
The value of the expression (cos2 23° – sin2 67°) is positive.