हिंदी

If A, B and C Are Interior Angles of a Triangle Abc, Then Sin ( B + C 2 ) = - Mathematics

Advertisements
Advertisements

प्रश्न

If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]

विकल्प

  • \[\sin \frac{A}{2}\]

  • \[\cos \frac{A}{2}\]

  • \[- \sin \frac{A}{2}\]

  • \[- \cos \frac{A}{2}\]

MCQ

उत्तर

We know that in triangle `ABC`

`A+B+C=180°`

⇒ `B+C=180°-A` 

⇒` (B+C)/2=(90°)/2-A/2` 

⇒ `sin ((B+C)/2)=sin (90°-A/2)`

`"since" sin (90°-A)=cos A` 

So 

`sin ((B+C)/2)= cos A` 

 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 30 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ


if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`


Evaluate.
sin235° + sin255°


Express the following in terms of angle between 0° and 45°:

sin 59° + tan 63°


Evaluate:

3cos80° cosec10° + 2 sin59° sec31°


Use tables to find cosine of 8° 12’


Use tables to find the acute angle θ, if the value of sin θ is 0.6525


Evaluate:

`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`


If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A


If 3 cos θ = 5 sin θ, then the value of

\[\frac{5 \sin \theta - 2 \sec^3 \theta + 2 \cos \theta}{5 \sin \theta + 2 \sec^3 \theta - 2 \cos \theta}\] is?

The value of cos2 17° − sin2 73° is 


If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\]  is equal to 


\[\frac{2 \tan 30° }{1 + \tan^2 30°}\]  is equal to


Prove that :

tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]


Express the following in term of angles between 0° and 45° :

sin 59° + tan 63°


Find the value of the following:

`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`


If cot( 90 – A ) = 1, then ∠A = ?


If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.


Sin 2B = 2 sin B is true when B is equal to ______.


If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×