Advertisements
Advertisements
प्रश्न
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
उत्तर
\[\begin{array}{l}(i) {LHS=tan5}^0 \tan {25}^0 \tan {30}^0 \tan {65}^0 \tan {85}^0 \\ \end{array}\]
\[\begin{array}{l}=tan( {90}^0 - {85}^0 )\tan( {90}^0 - {65}^0 )\times\frac{1}{\sqrt{3}}\times\frac{1}{\cot {65}^0}\frac{1}{\cot {85}^0} \\ \end{array}\]
\[\begin{array}{l}{=cot85}^0 \cot {65}^0 \frac{1}{\sqrt{3}}\frac{1}{\cot {65}^0}\frac{1}{\cot {85}^0} \\ \end{array}\]
\[=\frac{1}{\sqrt{3}} = RHS\]
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Prove that:
tan (55° - A) - cot (35° + A)
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
Write the maximum and minimum values of sin θ.
Write the value of tan 10° tan 15° tan 75° tan 80°?
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If 3 cos θ = 5 sin θ, then the value of
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Evaluate: cos2 25° - sin2 65° - tan2 45°
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)