हिंदी

Prove that : Tan5° Tan25° Tan30° Tan65° Tan85° = 1 √ 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that :

tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]

योग

उत्तर

\[\begin{array}{l}(i) {LHS=tan5}^0 \tan {25}^0 \tan {30}^0 \tan {65}^0 \tan {85}^0 \\ \end{array}\]
\[\begin{array}{l}=tan( {90}^0 - {85}^0 )\tan( {90}^0 - {65}^0 )\times\frac{1}{\sqrt{3}}\times\frac{1}{\cot {65}^0}\frac{1}{\cot {85}^0} \\ \end{array}\]
\[\begin{array}{l}{=cot85}^0 \cot {65}^0 \frac{1}{\sqrt{3}}\frac{1}{\cot {65}^0}\frac{1}{\cot {85}^0} \\ \end{array}\]
\[=\frac{1}{\sqrt{3}} = RHS\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 6.1 | पृष्ठ ३१३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If the angle θ = -60° , find the value of sinθ .


If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.


Prove the following trigonometric identities.

(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ


if `sin theta = 1/sqrt2`  find all other trigonometric ratios of angle θ.


Evaluate:

tan(55° - A) - cot(35° + A)


Find the value of angle A, where 0° ≤ A ≤ 90°.

sin (90° – 3A) . cosec 42° = 1


Prove that:

tan (55° - A) - cot (35° + A)


Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)


Write the maximum and minimum values of sin θ.


Write the value of tan 10° tan 15° tan 75° tan 80°?


If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 


If 3 cos θ = 5 sin θ, then the value of

\[\frac{5 \sin \theta - 2 \sec^3 \theta + 2 \cos \theta}{5 \sin \theta + 2 \sec^3 \theta - 2 \cos \theta}\] is?

If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]


\[\frac{2 \tan 30° }{1 + \tan^2 30°}\]  is equal to


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


Evaluate: cos2 25° - sin2 65° - tan2 45°


Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.

cos(90° - A) · sec 77° = 1


In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?


Prove the following:

tan θ + tan (90° – θ) = sec θ sec (90° – θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×