Advertisements
Advertisements
प्रश्न
Evaluate: cos2 25° - sin2 65° - tan2 45°
उत्तर
cos2 25° - sin2 65° - tan2 45°
= [cos(90° - 65°)]2 - sin2 65° - (tan 45°)2
= sin2 65° - sin2 65° - (1)2
= 0 - 1
= - 1.
APPEARS IN
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Use trigonometrical tables to find tangent of 37°
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
The value of tan 1° tan 2° tan 3° ...... tan 89° is
The value of tan 10° tan 15° tan 75° tan 80° is
Sin 2A = 2 sin A is true when A =
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1