Advertisements
Advertisements
प्रश्न
The value of tan 10° tan 15° tan 75° tan 80° is
विकल्प
−1
0
1
None of these
उत्तर
Here we have to find: ` tan 10° tan 15° tan75° tan 80° `
Now
`tan 10° tan 15° tan75° tan 80° `
=`tan (90°-80°) tan (90°-75°) tan 80° `
= `cot 80° cot 75° tan 75° tan 80°`
=`(cot 80° tan 80°)(cot 75° tan 75°)`
=`1xx1` ` [ "since" cot θ tanθ =1]`
=` 1`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find sine of 34° 42'
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.