Advertisements
Advertisements
प्रश्न
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
उत्तर
sin x = sin 60° cos 30° – cos 60° sin 30°
sin x = `(sqrt3/2)(sqrt3/2) - (1/2)(1/2)`
sin x = `3/4 - 1/4 = 1/2 = sin30^circ`
Hence, x = 30°
APPEARS IN
संबंधित प्रश्न
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
Use tables to find sine of 47° 32'
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If tanθ = 2, find the values of other trigonometric ratios.
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
Sin 2A = 2 sin A is true when A =
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
If tan θ = cot 37°, then the value of θ is