Advertisements
Advertisements
प्रश्न
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
विकल्प
2
−2
\[- \frac{1}{2}\]
\[\frac{1}{2}\]
उत्तर
We are given:` tan^2 45°-cos^2 30°=x sin 45° cos 45°`
We have to find x
⇒` 1-(sqrt3/2)^2=x 1/sqrt2 xx1/sqrt2`
⇒ `1-3/4=x/2`
⇒ `1/4=x/2`
⇒`x=1/2`
We know that ` sin°45=1/sqrt2 , cos 45°=1/sqrt2, tan 45°=1, cos 30°=sqrt3/2`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
Use tables to find cosine of 65° 41’
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
What is the maximum value of \[\frac{1}{\sec \theta}\]
If A and B are complementary angles, then
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
If tan θ = cot 37°, then the value of θ is
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.
If x and y are complementary angles, then ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.
If sec A + tan A = x, then sec A = ______.